- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
ArumaBaduge, Gayan Amarasuriya (1)
-
Dassanayake, Janith Kavindu (1)
-
Jayasinghe, Mayushi Amaya (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The transition to millimeter-wave and sub-THz frequency bands necessitates that the base-stations (BSs) utilize extra-large antenna arrays (ELAA) to compensate for the associated huge path-losses. However, when higher frequencies and shorter transmission distances are utilized, the spherical wave curvature can no longer be neglected. Hence, the ELAAbased wireless systems tend to operate primarily in the near-field. Thus, the far-field channel models used for near-field users may detrimentally affect wireless system designs and performance gains. To this end, we investigate the impact of mismatches between far-field and near-field channel models/precoders on the performance of ELAA-based integrated sensing and communication (ISAC). To this end, the achievable user rates are derived for the near-field. Two detectors for sensing a target are designed based on known/unknown BS/target channels. The performance of these detectors are investigated by deriving the probability of detection and probability of false-alarm. A transmit power optimization procedure is also proposed to maximize the minimum achievable user rate, while ensuring a power threshold for sensing. Numerical results are used to study the fundamental trade-off between the probability of detection and achievable rates for near-field ELAA-based ISAC. We unveil that ELAAs can be leveraged to improve the ISAC performance trade-offs.more » « lessFree, publicly-accessible full text available June 8, 2026
An official website of the United States government
